SPNLT20278 System Monitoring Modernisation

13500 1.011/12/24

SP Energy Networks RIIO-T3 Business Plan

RIIO-T3 System Monitoring Modernisation					
Name of Scheme	RIIO-T3 System Monitoring Modernisation				
Investment Driver	Asset Health				
BPDT / Scheme Reference Number	SPNLT20278				
Outputs	Protection & Control - Fault Recorder				
Cost	£2.81M				
Delivery Year	2027 - 2031				
Applicable Reporting Tables	5.1_Project_Meta_Data, 7.1_Scheme_C&V_NonLoad_Actuals, 10.2_Asset_ID, 10.3_Site_ID, 11.10_Contractor_Indirect				
Historic Funding interactions	N/A				
Interactive Projects	N/A				
Spand Appartianment	ET2	ET3	ET4		
Spend Apportionment	£0.23M £2.58M £0.00M				

Table of Contents

Tabl	le of Contents	3
1.	Introduction	4
2.	Background Information	4
3.	Optioneering	5
3.1.	Baseline: Do Nothing / Deferral to T4	5
3.2.	Option 1: Replacement with new equipment	5
3.3.	Option 2: Upgrade existing equipment	5
3.4.	Selected Option	7
4.	Cost	7
4.1.	Estimated Total Project Cost	7
4.2.	Regulatory Outputs	8
5.	Deliverability	8
5.1.	Delivery Schedule (Level 1 Programme)	8
5.2.	Risk and Mitigation	8
5.3.	Quality Management	9
5.3.2	1. Quality Requirements During Project Development	9
5.3.2	2. Quality Requirements in Tenders	9
5.3.3	3. Monitoring and Measuring During Project Delivery	9
5.3.4	4. Post Energisation	9
5.4.	Environmental and Wayleave Considerations	10
5.4.3	1. Environmental Planning	10
5.4.2	2. Wayleave Issues	10
5.4.3	3. Environmental Sustainability	10
6.	Conclusion	11
7.	Outputs included in RIIO T2 Plans	11
8.	Drawings	11
9.	Appendix A:	12

1. Introduction

ScottishPower Energy Networks (SPEN) utilise fault recorders for multiple applications including post-fault analysis, oscillation (stability) monitoring and power quality monitoring.

The data from these devices is crucial for connecting low carbon technologies such as BESS as they are used in commissioning and post-connection performance monitoring.

By the end of RIIO-T2, SPEN will have 237 legacy fault recorders and 10 legacy fault locators remaining on the transmission network. These devices are categorised as Health Index 5 and require to be upgraded or replaced.

In line with the above, the proposed non-lead asset outputs for the selected option are:

Asset	Voltage	Intervention	Volume	Delivery Year	
Directorian & Control Foult Decorder		Replacement - Addition	4	2027 2024	
Protection & Control - Fault Recorder	-	Replacement - Disposal	-4	2027-2031	
Protection & Control - Fault Recorder	-	Refurbishment Major	219	2027-2031	

The works are expected to be completed by regulatory year 2031.

2. Background Information

This paper supports a proposal to carry out a programme of work to upgrade 237 fault recorders and replace 10 fault locators on SPT's network.

The existing equipment is obsolete with spares no longer available for purchase and business requirements for data is increasing so these devices require to be upgraded or replaced.

Four different models of fault recorder and one model of fault locator are in use:

•	(92 off)	

- (69 off)
- (56 off)
- (2 off)
- (4 off)

All the above are of similar vintage and are no longer supported by the manufacturer.

3. Optioneering

This section provides a description of each intervention option and details the key considerations. A summary of each option is described at the end of this section.

3.1. Baseline: Do Nothing / Deferral to T4

A 'Do Nothing' option has been considered to represent ongoing maintenance and repair as part of the business as usual.

The intervention timeline considered within this option is summarised below:

- RIIO T3 Period [2027-2031]: Maintenance activities and replacement of failed units.
- RIIO T4 Period [2032-2036]: Upgrade / Replacement of the intended monitoring equipment

This option has been rejected based on the following:

- The monitoring equipment has reached the end of its useful life, and spare parts are no longer available for purchase.
- As inverter-based technologies become more common on the network, the need for data from monitoring equipment has increased and the 'do nothing' option is incompatible with this requirement.

3.2. Option 1: Replacement with new equipment.

The option to replace the monitoring equipment with entirely new equipment was considered but rejected based on the following:

- Replacement of this equipment requires outages on every circuit concerned meaning it would be impractical to replace it in a reasonable timescale.
- Replacement of this equipment is substantially more expensive as:
 - Entirely new equipment has higher costs.
 - Installation contractor would be required to wire new equipment.
 - New drawings would be required for every site/circuit.

3.3. Option 2: Upgrade existing equipment.

This option achieves the principal objectives of supportable hardware and improved performance by replacing specific circuit boards within the fault recorders. This option is also substantially less expensive and is therefore the preferred option.

The specific circuits are detailed in Appendix A.

Options	Мар	Layout of Substation/ Connection	Layout of all Route Works	Relevant Survey Works	Narrative Consenting Risks	Narrative Preferred Option	Narrative Rejection
Preferred – Option 2: Equipment upgrade	N/A	N/A	N/A	N/A	N/A	Preferred option will achieve the objectives of replacing obsolete hardware with modern supportable hardware and providing enhanced data quality.	N/A
Rejected – Option Baseline: Do Minimum / Deferral	N/A	N/A	N/A	N/A	N/A	N/A	The need for data from monitoring equipment is increasing due to the prevalence of inverter-based technologies and this need is incompatible with not upgrading this equipment. Spare parts are no longer available from the manufacturer.
Rejected – Option 1: Equipment replacement	N/A						 Rejected on the basis that it would: Be more expensive. Take substantially more time to complete. Require outages for every circuit concerned

3.4. Selected Option

Option 2 achieves the main objectives of:

- Replacing hardware with modern, supportable equivalents
- Improving data quality which will have multiple uses for SPEN and its customers.

This is also the most cost-effective option as:

- No installation contractor is required which is cost-effective.
- No circuit outages are required which is beneficial to network security.
- The target can be achieved much more quickly as entire sites can be completed in one exercise instead of circuit by circuit working.

4. Cost

The aim of this project is to upgrade 237 fault recorders and 10 fault locators on SPT's network.

4.1. Estimated Total Project Cost

A Business Plan provision and estimated cost of the project is indicated in the following table. These costs include associated Contractor Indirect. To be referred to tables "7.1_Scheme_C&V_NonLoad_Actuals" and "11.10_Contractor_Indirect".

Project costs for Option 2 (preferred) are summarised in the Cost Breakdown below:
--

Item	Description	Intervention	Volume	Estimated CAPEX (£m 23/24)
1	Protection & Control - Fault Recorder	Disposal	-4	
		Addition	4	
2	Protection & Control - Fault Recorder	Refurbishment Major	219	
3	Preliminaries and Site Establishment	-	-	
4	Risk	-	-	

Expenditure incidence is summarised below:

	Estimated CAPEX value per year, £m, 23/24 price base								
Energisation Year	Yr. 2026: CAPEX	Yr. 2027: CAPEX	Yr. 2028: CAPEX	Yr. 2029: CAPEX	Yr. 2030: CAPEX	Yr. 2031: CAPEX	RIIO-T2 Total: CAPEX	RIIO-T3 Total: CAPEX	Total: CAPEX
2027 - 2031	0.23	0.48	0.62	0.63	0.53	0.32	0.23	2.58	2.81

4.2. Regulatory Outputs

The indicative primary asset outputs are identified in table below:

Asset	Voltage	Intervention	Volume	Delivery Year	
Protection & Control - Fault Recorder		Replacement - Addition	4	2027 2024	
Protection & Control - Fault Recorder	-	Replacement - Disposal	-4	2027-2031	
Protection & Control - Fault Recorder	-	Refurbishment Major	219	2027-2031	

5. Deliverability

We have applied SPT project management approach to ensure that this project work is delivered safely, and in line with the agreed time, cost and quality commitments. We have a proven track record of delivering essential transmission network upgrade projects and will draw upon this knowledge and experience to effectively manage these works. We have assigned a dedicated Project Manager to the works at every stage who is responsible for overall delivery of the scope and is the primary point of contact for all stakeholders.

5.1. Delivery Schedule (Level 1 Programme)

A standard approach has been applied to the planning phase of these works and that will continue for the reporting and the application of processes and controls throughout the lifecycle. Table below summarises the key milestones within the delivery schedule.

Item	Project Milestone	Estimated Completion Date
1	IP-2	October 2024
2	SCA/ITT Documents	July 2025
3	Tender Process	February 2026
4	IP3 Stage 2	March 2026
5	Commence Site Works	June 2026
6	Complete Site Works	December 2030
7	Estimated Project Close Out	February 2031

Regular meetings with the Project and Construction Management Teams shall be undertaken to assess the ongoing effectiveness of the Project Management interfaces.

The Project Manager will facilitate internal Project Team Meetings, in which project progress and deliverables will be reviewed and any arising risks or issues will be discussed and addressed.

5.2. Risk and Mitigation

A Risk Register would be generated collaboratively during the initial design stages to identify any risks, which if realised, could result in deviation from the delivery plan. Mitigation strategies would also be developed to manage the risks identified and these will be implemented by the Project Manager. The risk register shall remain a live document and will be updated regularly.

5.3. Quality Management

SPT adopts a "life cycle" approach to Quality Management in major project delivery. Our Management Systems are certified to ISO 9001, ISO 14001 and ISO 45001. Various areas applicable to these standards ensure a quality product is delivered. The significant areas detailed below:

5.3.1. Quality Requirements During Project Development

Any risk or opportunity that may affect the quality of the product are detailed in the Project Risk Register.

The suppliers of main equipment may also receive a Factory Acceptance Test Inspection when the asset is being built.

5.3.2. Quality Requirements in Tenders

Each contract that SPT issues has a standard format. Specifically in relation to quality, this will include a Contractors' Quality Performance Requirement (CQPR). This CQPR represents a specification that details roles and responsibilities for all parties during the works, frequency and format of reporting. It will also specify the document management process to be adhered to during the delivery of the project. In addition to the CQPR, each project has a contract specific Quality Management Plan, detailing the inspection and testing regime for works as well as the records to be maintained.

5.3.3. Monitoring and Measuring During Project Delivery

SPT Projects undertake regular inspections on projects and contractors to monitor and measure compliance with SPT Environmental, Quality and Health and Safety requirements, as detailed in the contract specifications for the work. All inspections are visual, with the person undertaking the inspection ensuring that evidence of the inspection and any actions raised are documented.

The following inspections are completed:

- Quality Inspections (monthly)
- Environmental Inspections (monthly, with weekly review by third party Environmental Clerk of Works)
- Safety Assessments & Contractor Safety Inspection (daily, with full time Site Manager)
- Project Management Tours (monthly)

The scope of audits and Inspections is to determine compliance with:

- Procedures & Guides
- Planned arrangements for ISO 9001, 14001 & 18001
- Legal and other requirements.

5.3.4. Post Energisation

SPT Projects and SPT Operations carry out a Defect Liability Period Inspection within the Contract Defect Liability Period with the aim of identifying any defects and rectifying them with the contractors.

5.4. Environmental and Wayleave Considerations

5.4.1. Environmental Planning

Not applicable. All works within confines of substation.

5.4.2. Wayleave Issues

Not applicable. All works within confines of substation.

5.4.3. Environmental Sustainability

ENV-01-007 encompasses all activities undertaken within and in support of SP Energy Networks three Licences. This includes operational and business support functions concerned with management of SP Transmission, SP Distribution and associated regulatory and commercial interfaces, products, services and their associated environmental, social and economic impacts. The policy makes the following commitments which shall be respected in any works associated with this scheme.

"SP Energy Networks will incorporate environmental, social and economic issues into our business decision-making processes, ensuring compliance with or improvement upon legislative, industry, regulatory and other compliance obligations. We will deliver this by being innovative and demonstrating leadership on the issues which are important to us and our stakeholders, and will:

- Ensure the reliability and availability of our Transmission and Distribution network whilst creating value and delivering competitiveness by increasing efficiency and minimising losses
- Reduce greenhouse gas emissions, working towards a zero carbon emissions target by end of 2050, with interim targets of 15% by 2023 and 80% by 2030 from a baseline of 2013/2014
- Integrate climate change adaptation requirements into our asset management and operations processes to support business resilience and reduce the length and time of service interruptions;
- Consider whole life cycle impacts to reduce our use of resources to sustainable levels, improve the efficiency of our use of energy and water and aim for zero waste;
- Improve land, air and watercourse quality by preventing pollution and contamination and protecting and enhancing biodiversity in our network areas;
- Improve our service to local communities, supporting their economic and social development, protecting vulnerable customers and respecting human rights;

ENV-04-014 gives specific guidance on the management of incidents with environmental consequence, or potential for environmental consequences, over and above the general requirements for the management of incidents.

6. Conclusion

The proposed options have been evaluated based on scope feasibility, cost, timelines, and construction risks. Option 2 has proven to be the most economical solution for upgrading 219 fault recorders and 4 fault locators within the RIIO-T3 period.

In line with the costs prepared, the proposed scope of works under option 2 is the selected option:

- Scheme Total Cost: £2.81M
- Timing of investment: 2026 2031
- Declared outputs:

Asset	Voltage	Intervention	Volume	Delivery Year
Protection & Control - Fault Recorder		Replacement - Addition	4	2027-2031
Protection & Control - Fault Recorder	-	Replacement -	-4	2027-2031
		Disposal Refurbishment	240	2027 2024
Protection & Control - Fault Recorder	-	Major	219	2027-2031

• Price control period of outputs: 2027 - 2031

7. Outputs included in RIIO T2 Plans

N/A

8. Drawings

N/A

9. Appendix A:

SITE	Circuit
Earlsburn Wind Farm	Bonnybridge
Berwick	Grid T1
Berwick	Grid T2
Blackhill 33kV	Duns 33kV
Chapelcross 33kV	Grid T1
Chapelcross 33kV	Grid T2
Greengairs 33kV	Greengairs Gas / Windfarm
Glenlee 132kV	Newton Stewart / Glenluce 1&2
Glenlee 132kV	Kendoon / Tongland
Greenknowes 33kV	Devonside
Busby 275kV	Neilston-Giffnock No1
Busby 275kV	Strathaven-Giffnock No 2
Shrubhill 33kV	SGT2
Shrubhill 33kV	SGT1
Hagshaw Hill Wind Farm	Linmill 33kV
Charlotte Street 33kV	SGT1
Charlotte Street 33kV	SGT2
Kendoon 132kV	Glenlee / Carsfad
Aikengall	Dunbar
Dunlaw 132kV/33kV	Smeaton
Dunlaw 132kV/33kV	Galashiels
Dunlaw 132kV/33kV	Grid T1
Dunlaw 132kV/33kV	Grid T2
Dunlaw 132kV/33kV	Dunlaw / Toddleburn
Linmill 132kV	GT1
Linmill 132kV	GT2
Toddleburn Wind Farm	Toddleburn Wind Farm
Longpark	Galashiels 33kV
Inverarnan 275kV	Dalmally
Inverarnan 275kV	Windyhill
Lochans Moor 33kV	Glenluce / North Rhins / Auchneel / Barrhill
Craigengelt Wind Farm	Stirling
Dumfries 132kV	Tongland & T4
Dumfries 132kV	Chapx 1 & 2
Dumfries 132kV	T1A and T1B
Dumfries 132kV	T2A and T2B
Mark Hill Wind Farm	Auchencrosh / Coylton
Mark Hill Wind Farm	SGT1
Mark Hill Wind Farm	SGT2
Mark Hill Wind Farm	Arecleoch
Mark Hill Wind Farm	Windfarm 1A

Mark Hill Wind Farm	Windfarm 1B
Arecleoch	Mark Hill Feeder
Arecleoch	Grid T1A
Arecleoch	Windfarm Feeder 1A
Arecleoch	Grid T1B
Arecleoch	Windfarm Feeder 1B
Wishaw 275kV	SGT1
Symington 33kV	Linnmill / Glenkerie / Symington
Dalmarnock 275kV/132kV/33kV	SGT1
Dalmarnock 275kV/132kV/33kV	SGT2
Dalmarnock 275kV/132kV/33kV	St Andrews Cross 1
Dalmarnock 275kV/132kV/33kV	St Andrews Cross 2
Dalmarnock 275kV/132kV/33kV	Carntyne 1
Dalmarnock 275kV/132kV/33kV	Carntyne 2
Dalmarnock 275kV/132kV/33kV	GT1
Dalmarnock 275kV/132kV/33kV	GT2
Clyde South	Elvanfoot
Clyde South	SGT1A
Clyde South	SGT1B
Bathgate 132kV	GT1B_GT2B
Blyth 400kV	Eccles / Stella West 1
Blyth 400kV	Eccles / Stella West 2
Spango Valley 33kV	Grid T1
Spango Valley 33kV	Grid T2
Bathgate 33kV	Grid T1A
Bathgate 33kV	Grid T2A
Mossmorran 275kV	Longannet / Westfield
Devonside 132kV	Westfield / Bonnybridge_Stirling T2
Devonside 33kV	Grid T1
Devonside 33kV	Grid T2
Dunfermline 33kV	Grid T1
Dunfermline 33kV	Grid T2
Broxburn 33kV	Grid T1
Broxburn 33kV	Grid T2
Helensburgh 132kV	Windyhill / Sloy
Clyde North	Elvanfoot
Clyde North	SGT1A
Clyde North	SGT1B
Clyde North	SGT2A
Clyde North	SGT2B
Meadowhead 132kV	Kilmarnock South
Cupar 33kV	Grid T1
Cupar 33kV	Grid T2
Leven 33kV	Grid T1

OFGEM RIIO-T3 Engineering Justification Paper: RIIO-T3 System Monitoring Modernisation

Leven 33kV	Grid T2
Inverkeithing 33kV	Grid T1
Inverkeithing 33kV	Grid T2
Drone Hill Wind Farm	Berwick
Stirling 33kV	Grid T1
Stirling 33kV	Grid T2
Livingston 33kV	Grid T1
Livingston 33kV	Grid T2
Whitelee Extension	East Kilbride South
Whitelee Extension	SGT1
Whitelee Extension	SGT2
Whitelee Extension	SGT3
Markinch 33kV	Glenrothes No.1
Markinch 33kV	Glenrothes No.2
Partick 132kV/33kV	Grid T1
Partick 132kV/33kV	Grid T2
Devol Moor 132kV	Spango Valley 1 / Grid T1A
Devol Moor 132kV	Erskine_Braehead Park / Grid T1B
Devol Moor 132kV	Spango Valley 2 / Grid T2A
Devol Moor 132kV	Grid T2B / Trip Coils (Future)
Killermont 132kV/33kV	Grid T1
Killermont 132kV/33kV	Grid T2
Windyhill 275kV	MSCDN
Fallago	Smeaton
Fallago	Crystal Rig
Fallago	Fallago Rig Windfarm
Windyhill 275kV	MSCDN2
Drumcross	Grid T1
Drumcross	Grid T2
Millour Hill Wind Farm	Saltcoats A
Bonnybridge Grid	GT3-LVA
Bonnybridge Grid	GT3-LVB / Braco / Errochty 1
Bonnybridge Grid	Bathgate / Drumcross 1
Bonnybridge Grid	GT1 132 / 33kV
Bonnybridge Grid	SGT1 275 / 132kV
Bonnybridge Grid	Bainsford 1
Bonnybridge Grid	Stirling / Devonside
Bonnybridge Grid	Cumbernauld 1
Bonnybridge Grid	Bus Coupler
Bonnybridge Grid	Bathgate / Drumcross 2
Bonnybridge Grid	GT2 132 / 33kV
Bonnybridge Grid	SGT2 275 / 132kV
Bonnybridge Grid	Bainsford 2
Bonnybridge Grid	Stirling Westfield

Bonnybridge Grid	Cumbernauld 2
Strathaven 33kV	SGT1
Strathaven 33kV	SGT2
Strathaven 33kV	Blantyre Muir Wind Farm
Hunterston WTF	Hunterston Farm
Dewar Place 33kV	SGT1 R1 (LVA & HV)
Dewar Place 33kV	SGT1 R1 (LVB)
Dewar Place 33kV	SGT2 R2 (LVA & HV)
Dewar Place 33kV	SGT2 R2 (LVB)
Moffat	SGT1
Moffat	SGT2
Moffat	Harker
Moffat	Elvanfoot1
Moffat	Harestanes
Harestanes Wind Farm	Moffat
Harestanes Wind Farm	Grid T1A
Harestanes Wind Farm	Grid T1B
Harestanes Wind Farm	Windfarm 1A
Harestanes Wind Farm	Windfarm 1B
New Cumnock	Coylton 1
New Cumnock	Coylton 2
New Cumnock	SGT1A
New Cumnock	SGT2A
New Cumnock	SGT3A
New Cumnock	Dersalloch
New Cumnock	Black Hill / Dunhill 1
New Cumnock	Black Hill / Dunhill 2
West Brown Castle	East Kilbride South
Moffat	MSCDN1
Bonnybridge 275kV	Denny North 1
Bonnybridge 275kV	Denny North 2
Finnieston	GT1
Finnieston	GT2
Longannet 275kV	MSCDN1
Longannet 275kV	MSCDN2
Dunbar Viridor Sw/Stn	Viridor 1
Dunbar Viridor Sw/Stn	Viridor 2
Denny North	Lambhill
Denny North	Longannet
Denny North	Bonnybridge 1
Denny North	Bonnybridge 2
Denny North	BONN3 SGT3
Mark Hill Wind Farm	Kilgallioch
Bainsford	GT1

OFGEM RIIO-T3 Engineering Justification Paper: RIIO-T3 System Monitoring Modernisation

Bainsford	GT2
Ardoch & Over Enoch	East Kilbride South
Little Raith 33kV	Glenniston
Carntyne	GT2B
Carntyne	GT1B
Sighthill 33kV	SGT1 LVA HV
Sighthill 33kV	SGT1 LVB
Sighthill 33kV	SGT2 LVA HV
Sighthill 33kV	SGT2 LVB
Kilmarnock Town	SGT1
Kilmarnock Town	SGT2
Denny North	SGT1
Windyhill 132kV (GIS)	SGT2
Windyhill 132kV (GIS)	SGT3
Windyhill 132kV (GIS)	Partick Finnieston No2
Windyhill 132kV (GIS)	Killermont No2
Windyhill 132kV (GIS)	Kilbowie No2
Windyhill 132kV (GIS)	Bus Coupler
Windyhill 132kV (GIS)	Partick Finnieston No1
Windyhill 132kV (GIS)	Killermont No1
Windyhill 132kV (GIS)	SGT1
Windyhill 132kV (GIS)	Kilbowie No1
Burnfoot (Rhodders 33 Collector)	Devonside No2
Linmill 132kV	Coalburn
Linmill 132kV	Blacklaw Ext Wind Farm
Burnfoot (Rhodders 33 Collector)	Devonside No1
Wishaw 400kV	SGT8
Wishaw 400kV	SGT9
Wishaw 400kV	Bus Coupler
Blacklaw Wind Farm Ext	Grid T1
Bonnybridge Grid	GT4
Bonnybridge Grid	GT5
Bonnybridge Grid	GT6
Dersalloch Windfarm	New Cumnock Grid 1A
Bonnybridge Grid	Denny North 3
Kilgallioch	Markhill
Kilgallioch	SGT1
Kilgallioch	SGT2
Kilgallioch	SGT3
Kilgallioch	Reactor R1
Arecleoch	Grid T2
Moffat	Grid T1
Westerdod 132kV	Crystal Rig
Elderslie 33kV	GT1

Elderslie 33kV	GT2	
Kendoon 132kV	NECU GT2	

Table 1: Fault recorders

SITE	Circuit	
Mark Hill 275kV	1. AUCC/COYL	
	2. KILG	
	3. AREC	
Meadowhead 132kV	1. KILS	
	2. KILW1	
	3. KILW2	
New Cumnock 132	1. DESA	
	2. KEOO	
	3. BLAH1/DUNH1	
	4. BLAH2/DUNH2	
	5. BLCW	
	6. South Kyle WF	
New Cumnock 275	1. COYL1	
	2. COYL2	

Table 2: Fault locators